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ABSTRACT

Wing compression shock shadowgraphs were observed on two flights during banked turns of an
L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video
recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright
sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded
to determine the sun azimuth and elevation relative to the wing quarter chordline when the shadowgraphs
were visible. Sun elevation and azimuth angles were documented for which the wing compression shock
shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to
the wing, but for best results high sun angles relative to the wing are desired. The procedures and equa-
tions to determine the sun azimuth and elevation angle with respect to the quarter chordline is included in
the Appendix.

INTRODUCTION

In the late 1940’s, during high speed dives in single-engine fighter aircraft, pilots noticed a visible
indication of the normal shock wave over the wing. One of the first to notice this was Major Fredrick A.
Borsodi of the U.S. Army Air Force.[1] About this same time, when the National Advisory Committee
for Aeronautics (NACA) was testing small airfoils in transonic flow on fighter aircraft, the pilot could
watch the shock wave travel over the test airfoil, if the aircraft was in the right position relative to the sun.
What these pilots were watching were natural shadowgraphs caused by the refraction of the sun rays
passing through the density discontinuity of the shock. Today, airline passengers can often see the same
phenomenon. The purpose of this paper is to document sun elevations and azimuth angles for which the
wing compression shock shadowgraphs are visible. This paper will present several shock wave shadow-
graphs observed on the wing of an L-1011 aircraft at M = 0.85 and an altitude of 35,000 ft (10,700 m) and
will document the relative angles of the wing to the sun when this phenomenon is visible.

BACKGROUND

The shadowgraph is a simple technique, frequently used for visualizing the shock position on models
in wind tunnels, shock tubes, and ballistic ranges.[2] This technique needs a bright source of parallel light
rays. In flight, the sun serves this purpose. The flight shadowgraph method was first described by the
report of Cooper and Rathert [1] in 1948 for straight wing airplanes. Other authors have discussed the
flight technique briefly [2, 3, 4, and 5], but did not define the required sun angle to the wing. The expla-
nation of the flight shadowgraph as described by Cooper and Rathert is shown in figure 1. The change in
density of the air at the shock causes the light rays to be refracted. Because the pressure (and density)
change is greater near the surface, the refraction is greater. This results in a dark band immediately
behind the shock wave, followed by a light band. Cooper and Rathert described a region (fig. 2) for
which the sun was ±20° fore and aft relative to the wing and ±45° to the side from zenith (sun directly
overhead), in which the shock shadowgraph was visible. Since the wings of their airplanes were unswept,
the shock shadowgraph could be observed either looking towards the sun or looking away from the sun.



   
Figure 1. Schematic of shadowgraph physics.[1]

Figure 2. Proper orientation of the sun with respect to airplane axis, unswept wing.[1]

INSTRUMENTATION

The L-1011 aircraft was equipped with an instrumentation system that recorded aircraft state
parameters such as Mach number, altitude, heading, roll angle, and pitch angle. An Ashtech Z-12 global
positioning system (GPS) was used to record the time-based longitude, latitude, and altitude of the
aircraft. On the first flight, August 10, 1997, time of day was hand recorded when the shadowgraph of the
outboard wing shock was visible. On the second flight, January 22, 1998, professional-quality time-
synchronized Beta video recordings were used to determine the time of day when the shadowgraph of the
outboard wing shock was visible. Still photographs were taken on both flights.
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TEST CONDITIONS

A limited number of observations of compression shock waves were taken on two flights with the
Orbital Sciences Corporation’s L-1011 aircraft flying between an altitude of 35,000 and 38,000 ft and at
a nominal Mach number of 0.85 off the coast of Baja California, Mexico (fig. 3). The first flight was
on August 10, 1997 and the second flight was on January 22, 1998. Data was taken approximately
each hour by flying the aircraft in 360° or 540° turns banked at 20° to 30° and between 20° and 31.5°
North latitude at approximately –119° East longitude. This experiment was flown piggyback with a
primary experiment.

Figure 3. L-1011 flight tracks west of Baja California, Mexico.

DATA ANALYSIS

The following computations were performed to determine the orientation of the sun when the shad-
owgraphs were observed. First, the sun’s elevation from the local horizon and azimuth were computed
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from true north [6 and 7] using the flight date and time, and the aircraft latitude, longitude, and altitude as
measured by the global positioning system. The elevation angle was corrected for atmospheric refraction
[6 and 7] assuming a standard day temperature and measured ambient pressure at the altitude of the air-
craft [8]. Second, the sun elevation and azimuth were converted into Cartesian distances north, east, and
below the aircraft, assuming an arbitrary distance to the sun. (This distance drops out of the computations
later, so its magnitude is not important.) Third, the north, east, and down components to the sun were
rotated, first through the heading, then pitch, then roll of the aircraft. A final rotation of the components
was made to align the quarter chordline axis with the wing of the aircraft being viewed, corresponding to
the wing-sweep angle of 35°. For the right wing this angle is 125° and for the left wing it is 235°. Lastly,
these component distances to the sun were converted to elevation above the wing and azimuth relative to
the right wing quarter chordline, positive to the right, or clockwise. Reference 9 describes the equations
and procedures to determine these angles.[9] The data obtained from the left wing was transposed to the
right wing. In this way data from both wings could be compared, no matter what day, time, position, or
attitude of the aircraft.

RESULTS

Figure 4 shows the shadowgraph from the wing compression shock looking towards the sun
(–90° <sun azimuth relative to quarter chordline <+90°). As described previously in the Background
section of this paper, the shadowgraph on the wing is noted by the dark band extending from inboard to
outboard, with a light band immediately downstream of it. Figure 5 shows a similar view of the shock
4

Figure 4. Wing compression shock shadowgraph looking towards sun.



  

Figure 5. Wing compression shock shadowgraph looking away from sun.
shadowgraph looking away from the sun (+90° <sun azimuth relative to quarter chordline <+270°), in
this case at a fairly low angle relative to the wing quarter chordline. The shock above the wing (fig. 4) is
barely visible just outboard of the fuselage shadow and foreward of the shock shadowgraph along the
wing span. The shock can be seen more clearly with the proper background, as shown in figure 6, and
appears here to be at the wingtip. The background that worked well in this case consisted of scattered
alto-cumulus clouds with the blue ocean below. The wing shock appears to be approximately 6 ft
(2 m) high. 

Figure 6. Photo of wingtip shock.
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The test conditions for which the wing compression shock shadowgraph was visible looking towards
the sun is shown in figure 7(a). A sketch of the planform of the L-1011 is included to help orient the
reader. At low sun elevations relative to the wing, of 20° to 30°, the shadowgraph was visible only for a
short period of time during the banked turns, for sun azimuths from 15° forward and 5° aft relative to the
wing quarter chordline. At the low oblique sun elevations relative to the wing, the shadowgraph did not
accurately portray the shock location. Instead, when looking towards the sun, it appeared that the shad-
owgraph was projecting the image of the shock near the wingtip inboard. When the sun is between 60°
and 70° elevation relative to the wing, the shadowgraph is visible for a longer duration during the banked
turn, for azimuths from approximately 40° forward to 20° aft of the quarter chordline. When the sun is
75° or higher, the shock was visible from approximately –100° to 0° relative to the quarter chordline. For
best results bright sunlight on the aircraft is required and high sun angles relative to the wing are desired.

(a) Looking towards sun.

Figure 7. Required sun azimuth and elevation angles for viewing wing compression shock shadowgraph.
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Test conditions looking away from the sun, and when the wing compression shock shadowgraph was
visible, are shown in figure 7(b). Again for low sun elevation angles of   10° to 25° relative to the wing,
the wing compression shock shadowgraph was visible only briefly during the banked turns, between sun
azimuths approximately even with the quarter chordline projection to 15° aft of the quarter chordline
projection. Between sun elevation angles of 65° to 80°, the duration increased greatly. At these sun ele-
vations, the wing compression shock shadowgraph could be seen for sun azimuth angles of 35° forward
to 45° aft of the quarter chordline projection.

(b) Looking away from sun.

Figure 7. Concluded.

The wing compression shock shadowgraphs were observed for sun elevations relative to the horizon
of 12° to 76° in August and 25° to 42° in January. These sun elevation angles are not necessarily limits,
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Cooper and Rathert noted that the technique was not as effective in the winter months, presumably near
Moffett Field, California, at a latitude of approximately 37.4°.

CONCLUDING REMARKS

For two flights of an L-1011 aircraft, sun elevation and azimuth angles were documented for which
wing compression shock shadowgraphs were visible relative to the wing quarter chordline. The data was
taken during banked turns at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photographs
and videotape recording of the shadowgraphs were taken during the flights.

Bright sunlight on the aircraft is required and high sun angles relative to the wing are desired for best
results.

Looking toward the sun, and at low sun elevations relative to the wing of 20° to 30°, the wing
compression shock shadowgraph was visible only briefly during banked turns, for sun azimuths from 15°
forward and 5° aft relative to the wing quarter chordline. When the sun is 75° or higher, the shock was
visible from approximately –100° to 0° relative to the quarter chordline.

With the sun behind the observer, and for low sun elevation angles of 10° to 25° relative to the wing,
the wing compression shock shadowgraph was visible only briefly during   banked turns, between sun
azimuths approximately even with the quarter chordline projection to 15° aft of the quarter chordline
projection. Between sun elevation angles of 65° to 80°, the wing compression shock shadowgraph was
visible for sun azimuth angles of 35° forward to 45° aft of the quarter chordline projection.

The shock wave at the wingtip can be observed on the low wing during a banked turn with the proper
background, such as alto-cumulus clouds over a blue ocean.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, May, 1998
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APPENDIX

The following procedure was used to determine the sun azimuth and elevation angles with respect to
the wing quarter chordline for the flight on January 22, 1998. For years other than 1998, the constants in
equations (1), (2), (3), (4), (5), and (8) could change. Check the Astronomical Almanac for the year of
interest.

NOMENCLATURE

az azimuth of sun from true north, deg

sun azimuth to right of wing quarter chordline, deg

d day of year number for 1998

dd sun distance down from aircraft toward earth, au

de sun distance east from aircraft, au

dn sun distance north from aircraft, au

dx sun distance along aircraft wing quarter chordline, au

dy sun distance left of aircraft wing quarter chordline, au

dz sun distance below aircraft wing quarter chordline, au

el elevation of sun above local horizon, deg

correction of elevation from atmospheric refraction, deg

sun elevation above wing quarter chordline, deg

EOE equation of equinox value for the particular day, sec

g mean anomaly, deg

GAST Greenwich apparant sidereal time, hr

GPS global positioning system

h local hour angle, deg

L mean longitude of sun, corrected for aberration, deg

mbar millibar, a unit of pressure measurement

n number of days from the epoch J2000.0

P ambient air pressure, mbar

t UTC time in decimal hours, hr

ambient air temperature, K

UTC universal time coordinated

aircraft ellipsoid altitude, from GPS, ft

α right ascension, deg

azw

elref

elw

T ∞

zg
9



           
ε obliquity of the ecliptic, deg

δ declination, deg

aircraft geodetic north latitude, from GPS, deg

θ aircraft pitch, deg

ecliptic longitude, deg

aircraft east longitude, from GPS, deg

φ aircraft roll, deg

ψ aircraft heading, deg

wing azimuth angle quarter chordline, deg

Calculate the number of days from the epoch J2000.0 based on the day of year number for 1998 and
the UTC time in decimal hours

(1)

Mean longitude of sun, corrected for aberration

(2)

Mean anomaly

(3)

Ecliptic longitude

(4)

Obliquity of ecliptic

(5)

Right ascension (in the same quadrant as )

(6)

Declination

(7)

Equations (1) to (7) have a precision of 0.01°, pp. C24 [7].

Greenwich apparant sidereal time, pp. B61 [7]

(8)

λg

θe

θg

ψw

n 731.50– d t
24
------+ +=

L 280.460 0.9856474n+=

g 357.528 0.9856003n+=

θe L 1.915 g( ) 0.020 2g( )sin+sin+=

ε 23.439 4 10× 7–
n–=

θe

α  
1– ε( ) θe( )tancos( )tan=

δ  
1– ε( )sin θe( )sin( )sin=

GAST 6.6306380 0.06570982d 1.00273791t EOE
3600
------------+ + +=
10



 

where EOE is the equation of equinox value for the particular day, pp. B8-B15 [7]. Because this quantity
is not readily calculated, a look-up table of the appropriate day’s value is used.

The aircraft position, as determined from GPS, is in geodetic north latitude, , east longitude, ,
and ellipsoid altitude, . 

Local hour angle, pp. B61 [7]

(9)

Azimuth of sun from true north, pp. B61 [7]

(10)

The correction of elevation from atmospheric refraction needs to be determined. This was determined
from the altitude of the aircraft measured by GPS, and assuming 1976 U.S. Standard Atmosphere [8]
conditions for temperature. Measured ambient pressure was used. Because the GPS measures ellipsoidal
altitude, , subtract the geodetic separation to get geometric altitude above mean sea level needed for the
Standard Atmosphere. The geodetic separation is usually determined by a look-up table, but for this
experiment the constant value of –99.4 ft (at Edwards AFB) was used for all calculations.

For elevations greater than 15°, pp. B62 [7]

(11)

and for elevations less than or equal to 15°, pp. B62) [7]

(12)

Elevation of sun above local horizon, pp. B61 [7]

(13)

Find the distance of the sun from the aircraft in orthogonal north, east, and down in astronomical units
(unit distance). This distance is arbitrary, and drops out of the equation at the end

(14)

(15)

(16)

λg θg
zg

h θg α– 360GAST
24

--------------------------+=

az  
1– δ( ) h( )sincos–

δ( ) λg( ) δ( ) h( ) λg( )sincoscos–cossin
----------------------------------------------------------------------------------------------tan=

zg

elref
0.00452P
T ∞ el( )tan
-------------------------=

elref

P 0.1594 0.0196el 0.00002el
2

+ +

T ∞ 1 0.505el 0.0845el
2

+ +

--------------------------------------------------------------------------------------=

el  
1– δ( ) λg( ) δ( ) h( ) λg( )coscoscos+sinsin elref–sin=

dn az( ) el( )coscos=

de az( ) el( )sinsin=

dd el( )sin–=
11



Rotate these distances through aircraft yaw angle, then aircraft pitch, then aircraft roll, and finally by
wing azimuth angle. Note that no dihedral angle was accounted for, which is appropriate for this aircraft.
This rotation is given in matrix form by

(17)

(18)

(19)

Multiplying this out gives the following three algebraic equations for dx, dy, and dz, respectively:

(20)

dx

dy

dz

 ψw( )cos ψw( )sin 0 

 ψw( )sin– ψw( )cos 0 

 0 0 1 

 1 0 0 

 0 φ( )cos φ( )sin  

 0 φ( )sin– φ( )cos  

 θ( )cos 0 θ( ) sin–

 0 1 0 

 θ( )sin 0 θ( ) cos

                 

 ψ( )cos ψ( )sin 0 

 ψ( )sin– ψ( )cos 0 

 0 0 1 

dn

de

dd

=

dx

dy

dz

 ψw( )cos ψw( )sin 0 

 ψw( )sin– ψw( )cos 0 

 0 0 1 

 1 0 0 

 0 φ( )cos φ( )sin  

 0 φ( )sin– φ( )cos  

             
θ( ) ψ( )coscos θ( ) ψ( )sincos θ( )sin–

ψ( )sin– ψ( )cos 0

θ( )sin ψ( )cos θ( )sin ψ( )sin θ( )cos

dn

de

dd

=

dx

dy

dz

 ψw( )cos ψw( )sin 0 

 ψw( )sin– ψw( )cos 0 

 0 0 1 

             
θ( ) ψ( )coscos θ( ) ψ( )sincos θ( )sin–

φ( )sin θ( ) ψ( ) φ( ) ψ( ) sincos–cossin φ( )sin θ( ) ψ( ) φ( ) ψ( ) coscos+sinsin φ( ) θ( )cossin

φ( )cos θ( ) ψ( ) φ( ) ψ( ) sinsin+cossin φ( )cos θ( ) ψ( ) φ( ) ψ( ) cossin–sinsin φ( )cos θ( )cos

             
dn

de

dd

=

dx ψw( ) θ( )coscos ψ( ) ψw( ) φ( ) θ( ) ψ( ) φ( ) ψ( )sincos–cossinsin{ }sin+cos dn

          ψw( ) θ( )coscos ψ( ) ψw( ) φ( ) θ( ) ψ( ) φ( ) ψ( )coscos+sinsinsin{ }sin+sin de

          ψw( ) θ( ) ψw( ) φ( ) θ( )cossinsin+sincos– dd

+

+

=
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(21)

(22)

Now these components can be transformed into azimuth and elevation relative to the wing quarter
chordline.

(23)

(24)

dy ψw( )sin– θ( )cos ψ( ) ψw( )cos φ( ) θ( ) ψ( ) φ( ) ψ( )sincos–cossinsin{ }+cos dn

          ψw( )sin– θ( )cos ψ( ) ψw( )cos φ( ) θ( ) ψ( ) φ( ) ψ( )coscos+sinsinsin{ }+sin de

          ψw( )sin θ( ) ψw( )cos φ( ) θ( )cossin+sin dd

+

+

=

dz φ( )cos θ( ) ψ( ) φ( )sin ψ( )sin+cossin dn

         φ( )cos θ( ) ψ( ) φ( )sin– ψ( )cossinsin de φ( ) θ( )coscos dd+ +

=

azw  
1– dy

dx
------ 

 tan=

elw  
1– dz–

dx
2

dy
2

+
----------------------------

 
 
 

tan=
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shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun
angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and
elevation angle with respect to the quarter chordline is included in the Appendix.
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